

Best Practices for DNN

Extension Development

Technology Services and Support … for the Life of Your Project

Design Develop Optimize Support

Published July 2020

© 2020 by IowaComputerGurus, Inc July 2020

i 515.270.7063 | support@iowacomputergurus.com

Contents

The Purpose of This Document ... 1

Who Should Use This Document? ... 1

Document Revision History ... 2

Getting Started with Module Extension Development ... 3

Project Templates .. 3

Online Resources ... 3

Books .. 4

Project Setup/Configuration Recommendations ... 4

Module Folder Naming and Code Namespaces .. 5

Development Pattern Selection .. 6

Packaging and DNN Version Support .. 8

Being a Good DNN Citizen .. 9

Support DatabaseOwner and ObjectQualifier .. 10

Avoid External Configuration and Web.Config Changes .. 10

Avoid Manipulating DNN Database Tables Directly .. 11

roperly Tie Data for Multi-Portal and Multi-Module Installations .. 13

Use Consistent Flow for Module Configuration .. 14

Carefully Consider any Third-Party Inclusions ... 14

Implement Needed DNN Interfaces for Development ... 15

Include License File and Release Notes with Package ... 16

© 2020 by IowaComputerGurus, Inc July 2020

ii 515.270.7063 | support@iowacomputergurus.com

Cleanup Un-Needed Files .. 16

Code Specific Requirements .. 17

Set ValidationGroup Properties on ALL Validators ... 17

Testing Scenarios ... 17

Installation Types .. 17

Test Scenarios .. 17

Living Document Notice ... 18

About IowaComputerGurus Inc. .. 18

Contacting IowaComputerGurus .. 18

Feedback .. 18

Disclaimer .. 19

Copyright and Trademark Notices .. 19

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
1

The Purpose of This Document

This document has been created to provide a baseline set of information related to the development

of Extensions for the DNN / DotNetNuke Platform.1 The best practices listed here cover items that

relate specifically to the creation of Modules, Authentication Providers, and Skin Objects and have

been compiled based on information collected from the DNN Community and over more than 1,000

custom development projects that have been completed by IowaComputerGurus over the past 12

years.

Not all aspects of each section will apply to every project. Also, even with the best of intentions, some

project solutions must deviate from the practices listed in this guide to be effective. Therefore, we

want to stress that this is simply a set of basic best practices that should be applied in most situations

whenever possible, to ensure performance and interoperability.

Who Should Use This Document?

This document is NOT intended to be an introductory course on how to develop DNN/DotNetNuke

modules. However, where applicable, we have included additional references to community-based

and other resources that might be of benefit for those just starting with DNN/DotNetNuke

development.

This document is intended to be used by developers with at least an intermediate understanding of

general development principles. Specific knowledge of DNN is not required, but a basic

understanding of software and website development is assumed.

1 DNN Software—the makers of the platform—have changed the name “DotNetNuke” to DNN, and created additional product

tiers under the brands such as “DNN EVOQ,” etc. Generally speaking, the terms DNN, DotNetNuke, and DNN Platform refer to

the open source “free” versions of the product. The terms DNN Professional, Evoq, Evoq Content, Evoq Content Basic, DNN

Social, Evoq OnDemand, and Evoq Engage are premium or paid-for versions. Iowa Computer Gurus has significant

experience on all versions. For the purposes of this document we will hereafter refer to the platform and all of its iterations as

“DNN” unless there is a specific reason to do otherwise, such as code or API related phrasing.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
2

Document Revision History

Rev. Date Notes

2/7/2009 First public release of module.

7/3/2012 Updated for DNN 6.x support and design patterns.

5/15/2015 Updated for new document format.

10/01/2015 Format and content changes, updated links, external references, and version

notes.

7/10/2020 Updated to reflect current issues impacting the DNN community and edited for

relevance since the prior revision.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
3

Getting Started with Module Extension Development

As previously stated, this guide was not created to provide an introduction to DNN module

development, but to be a guide in creating modules that have the best chance of being stable across

the multitude of DNN environments. The following sampling of links and resources may be helpful in

"Getting Started" with DNN development.

Project Templates

In recent years the number of templates available to developers has changed, with one only one of the

most commonly supported ones remaining in active development. These serve as a simple starting

point for development, however, should be used with caution.

Chris Hammond's Template

Chris Hammond has been managed development templates for DNN for the better part of a decade.

His templates can be obtained from his project GitHub page

https://github.com/ChrisHammond/DNNTemplates. These templates provide both VB.NET and C#

templates to help get started with DNN Development.

As with any template, these contain multiple bits of boilerplate code, and it is essential to review

these templates and any generated projects and REMOVE the unused boilerplate content. Failure to

do so can result in errors and other unexpected behaviors. IowaComputerGurus strongly suggests

adapting your templates that are tailored to your purposes.

Online Resources

There is a plethora of information available online regarding DNN development. However, due to the

massive amounts of information available, it can be hard to find the exact information that you are

looking for. Therefore, the following are a few of the recommended online resources for those looking

for basic development information.

https://github.com/ChrisHammond/DNNTemplates

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
4

DnnCreative.com

DNNCreative is a paid video tutorial site; however, they provide an extensive collection of tutorials that

can be helpful for the developer that is looking to start module development as well as individuals

looking for basic DNN usage information.

DNNCommunity Blogs

The blogs on dnncommunity.org are one of the most commonly overlooked information sources

available. The articles here are written by other community members showcasing the important

lessons they have learned. You will also find updates from the project organizers about upcoming

releases and more.

MitchelSellers.com

In addition to the above resources, our CEO Mitchel Sellers will often write short articles about various

DNN and .NET development topics on his blog: http://mitchelsellers.com/

Books

There are many DNN books out on the market. There is only one book relating exclusively to DNN

module development, "Professional DotNetNuke Module Development," written by Mitchel Sellers.

Although this book covers a good foundation, it is worth noting that it was authored in 2009 around

the release of version 5.0.0 of DNN Platform, where the current version is 9.6.2 as of July 2020.

Although slightly outdated, it is still one of the few reference materials that cover development topics

in detail.

Project Setup/Configuration Recommendations

This section supports the project setup, configuration, and packaging for deployment. These

recommendations are general and apply to all types of extension development. The goal of these

recommendations is to make your project easy to manage while limiting any possible risk of collision

with other projects.

http://mitchelsellers.com/

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
5

Module Folder Naming and Code Namespaces

Developers often overlook folder names and code namespaces during the project setup process,

however, careful consideration should be taken when selecting these values due to the way DNN

works. DNN users can install a module developed by any company, at any time. This flexibility can be

a risk if using common naming for projects. As such, we have two recommendations for module folder

naming: the Best Scenario, which provides for the best security against conflicts and the Best

Compromise Scenario, which is slightly easier to implement, but can still have risks, although,

significantly minimized. The final point in this section discusses the importance and

recommendations of Namespace and Assembly definitions.

Best Scenario

From a Best Practices standpoint, we have found that placing all custom modules developed by a

single company into a shared folder is one way to prevent conflicts from a physical file point of view.

For example, placing a "guestbook" module developed by IowaComputerGurus in the

/DesktopModules/ICG/Guestbook folder would provide a level of separation between other modules

that traditionally are stored directly inside the /DesktopModules folder and our module.

NOTE: This same concept can be used for MVC modules, which must live in the

/DesktopModules/MVC folder by introducing a similar parent folder such as

/DesktopModules/MVC/ICG/Guestbook.

This naming convention helps ensure that the only file conflicts that would be introduced are

explicitly related to the code that you deploy. The process of configuring this is slightly involved,

requiring the changing of the base path and other path values in the respective .dnn manifest files.

The overall level of effort for new projects is less than 1 minute of configuration. Once deployed, it can

be harder to adjust due to the install/update processes.

Best Compromise Scenario

If, for one reason or another, you cannot work with the "Best Scenario" laid out in the previous

section, working with a naming strategy that incorporates your company name or initials into the

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
6

module folder is an excellent place to start. For example, with the guestbook placing the module in an

ICG_Guestbook folder would reduce the risk of conflict. This scenario is not as favorable only because

it does not group modules together.

Namespaces and Assembly Names

Aside from physical file naming within the module folder, namespaces and assemblies must be

created in a manner that will not conflict with others as well. Using a namespace structure following

the format Company.Modules.ModuleName or ICG.Modules.Guestbook for example helps ensure that

others will not be placing code inside a similar namespace where it might conflict with your code.

The last consideration is in the naming of the compiled DLL. We recommend following Microsoft

naming guidelines and using the root namespace for the project as the assembly name. In our

example, we would generate a DLL with the name of ICG.Modules.Guestbook.dll. This method

ensures that we have the best chance of not conflicting with another module. If we simply used

Guestbook.dll it could be easy for another module to have the same DLL name and overwrite our file.

Development Pattern Selection

DNN platform currently supports numerous development patterns; WebForms, MVC & SPA as the

primary patterns, each of these patterns are at different levels of maturity and support as it relates to

the features and functionality that you can implement.

Overall, the decision point for most developers will focus on which toolset is best for their skillset.

However, it is important to note specific situations that might dictate a model selection.

Authentication Providers

DNN supports the concept of Authentication Providers, whereby as an extension developer, you can

inject a custom authentication process. This can be used to support two-factor-authentication or

integrate with third-party systems.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
7

When working with this project type, you MUST utilize an ASP.NET Web Forms User Control to get

proper integration to the DNN Platform. Internally to this, you can do additional customization but

the UI framework for login must be WebForms.

Integrations Requiring DNN's Rich Text Editor

DNN Platform has a built-in rich text editor, currently based on the CKEditor. The DNN

implementation of this editor includes helpful features such as an integrated file browse/upload

solution. This is implemented as a WebForms user control and can only be used by WebForms User

Controls.

Themes & Skin Objects

Any developed theme for the DNN platform must be based on either a parsed HTML template or a Web

Forms User Control. Additionally, any element to be injected into a Theme as a Skin (Theme) Object

must be implemented with WebForms.

MVC Limitations

Although DNN Platform does provide support for ASP.NET MVC, it is important to understand that the

MVC implementation is being executed within the context of an ASP.NET WebForms page lifecycle.

This introduces certain limitations in functionality, API's and other behaviors. Most notably is that

standard auto-implemented ASP.NET MVC Unobtrusive validation that many developers have come to

expect DOES NOT work with DNN platform as of version 9.6.2.

Mixing Patterns

One common misconception with the various DNN Platform models is that you must "pick one," this

is not a true statement. However, it is easier to pick just one. Nothing within the DNN Platform code

prevents a developer from using a combination of WebForms, MVC, or SPA within the same extension

solution aside from any previously mentioned "hard stop" requirements.

Mixing patterns can be a powerful tool for teams that which to utilize efficiencies of the Razor Syntax

for MVC modules for UI intensive elements and fall back to WebForms for situations where validation

is vital. IowaComputerGurus strongly recommends documenting these situations clearly to educate

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
8

development teams regarding the nature of any decisions as often the domain knowledge of why can

be lost over time.

Packaging and DNN Version Support

DNN has evolved dramatically, and there are various limitations and risks for supporting specific

versions. Each project will need to consider the audience they are supporting and any tradeoffs or

limitations encountered by making a particular target decision.

Select the Highest Possible Minimum Version

As a general rule targeting the highest possible minimum version of DNN for any custom development

is the best possible starting point. This provides you with a number of benefits:

• Targeting the latest version, you can take advantage of the most currently added functionality. With

recent changes in DNN, this gets you access to things such as Dependency Injection (Added in 9.4.0) as

well as improvements in Search Integration (Added in 9.6.0) or similar

• Future API changes are documented during various releases along the lifecycle of the DNN Platform

project. The project does follow a process for removal of items; however, if you retain too far back, you

might not be aware of possible API removals that could impact your project in the future.

• .NET Version upgrades have occurred in recent releases, such as an update to 4.7.2 as a requirement for

9.4.0 and later.

For those that are developing solutions for wide-spread distribution, it might be necessary to target

an older version to support a broader audience. However, IowaComputerGurus' recommendation for

2020 is to target nothing earlier than 9.2.0. With the number of security issues resolved and the

severity of the problems addressed, we need to encourage those on older versions to upgrade, and

going back too far limits the ability to build software with current development standards.

For those that must target 8.x, or even 7.x to support customers, it is recommended to

update your project, even temporarily, to validate for any potential build warnings, or

errors, after the release of each new DNN version; allowing for proper testing for upcoming

breaking changes.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
9

Always Set the Minimum Required Version

Once you have decided on which version to target, it is crucial to ensure that users do not install an

extension on a non-supported version. If you build your module against DNN 5.5.0 and a user tries to

install it to a DNN 5.0.0 website, as soon as the package is unzipped, their site will cease to function,

throwing an error that it was not able to bind to the proper DLL. Rolling back from this situation

requires developer experience or a rollback to a system backup, both of which cost time & money for

website owners.

To ensure that this does not happen, all DNN manifests support the specification of a version limiter. If

the DNN installation is not at a set minimum value, the module will not install, and the user will be

notified that they do not yet meet the pre-requisites for installation. You set this version by adding the

following nodes under the main <package> node within your DNN manifest and is included by default

with most recent templates, including those from Chris Hammond

<dependencies>

<dependency type="CoreVersion">06.00.00</dependency>

</dependencies>

It is important to note that the CoreVersion value must be a three-part version number with two digits

for each part, as reflected above.

Do not forget to update this value if/when you update your NuGet references for DNN in

the future!

Being a Good DNN Citizen

In the preceding section, we reviewed the most critical elements for development to ensure that your

solutions will work, continue to work with the evolution of the DNN Platform and some basic features.

This section switches the focus a bit for those that are developing solutions for wider distribution,

whereby following more of the DNN standard behaviors can become crucial, even if you might not use

a feature yourself.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
10

Support DatabaseOwner and ObjectQualifier

One key configuration element of DNN that is often overlooked by module developers is the ability to

specify custom DatabaseOwner and ObjectQualifier values. Items not heavily used, and then being

omitted from SQL Data Provider files can prove to be problematic and a support nightmare.

Supporting these replacement tokens, {databaseowner} and {objectqualifier}, is incredibly simple

from a developer standpoint. We have found that when creating scripts via an external system, it is

easy to do a find and replace operation to add this support as long as you follow a specific naming

standard. For example, if you name all objects using [dbo].[objectname], you can do a find on the

value "[dbo].["without the quotes and replace it with "{databaseOwner}[{objectQualifier}" again

without the quotes, and your entire script set is updated.

IowaComputerGurus does NOT condone or recommend utilizing these options; however,

since they are included in the platform, anything distributed broadly should support the

pattern.

Avoid External Configuration and Web.Config Changes

Although the XML Merge functionality it is easy for developers to make web.config changes without

requiring site administrators to make manual changes; we recommend that solutions avoid any

web.config changes if at all possible. By avoiding these configurations, you have a module that will

install in a more streamlined approach, and there are fewer moving parts that can go wrong.

Even with the XML Merge functionality that comes with 5.x and later there are still risks associated

with adding web.config items and conflicts with other modules. Although we fully understand that,

depending on the specific implementation, this may not be possible. So this rule is something that

should be considered carefully based upon what goal is being attempted with the custom solution.

If you must utilize a configuration merge to install your extension, pay special attention to

the uninstall step to ensure that when removing your module, it will allow a clean rollback.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
11

Avoid Manipulating DNN Database Tables Directly

When reviewing custom solutions that have been developed for customers in the past, one of the

most common mistakes that we see are cases where existing DNN API's are not leveraged. Developers

are either re-creating the wheel or are manipulating DNN database tables and data directly. To be

clear, you should AVOID doing anything to DNN tables directly. We will help you understand how to

compensate for this in the following sections. They will give some insight into where you can find the

API's necessary to leverage the DNN functionality the reasons why direct database access is risky.

Determining Proper APIs

Sadly, one of the areas lacking within the DNN framework is API documentation. There is a bit of a

learning curve necessary to fully identify the various namespaces and locations that can be used to

obtain the information needed. The following table lists a few of the most common namespaces that

provide access to key DNN data.

Namespace Description

DotNetNuke.Entities.Portals Classes in this namespace provide portal specific

information. The PortalController is one of the key objects

to investigate in this namespace.

DotNetNuke.Entities.Tabs Classes in this namespace provide information on tabs, or

pages, within the DNN portal. The TabController provides

many helpful methods, especially for obtaining lists of

pages in the portal, and similar items.

DotNetNuke.Entities.Modules Classes in this namespace provide information on modules

within the DNN portal. The ModuleController class

provides access to module lists, settings and more. This is

one of the more commonly known namespaces as the

default "settings" functionality uses the ModuleController.

DotNetNuke.Entities.Users Classes in this namespace provide information on users

within the DNN portal. The UserController provides most

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
12

Namespace Description

of the basic functionality needed to retrieve and work with

users.

DotNetNuke.Security.Roles Classes in this namespace provide information about

Roles. The RoleController allows you to get a list roles,

add/remove users from roles and more.

The above reference serves as a good starting point and illustrates that DNN does expose a very

robust API for programming. The only real limiting factor is that sometimes you may have to

experiment with a method just to see what it does due to the lack of API comments.

Risks of Direct Database Manipulation

From a best practice standpoint, the real question here is, "what is my risk"? Well, we believe that the

risks of direct database manipulation are very high, thus the inclusion of this topic in our best

practices recommendation. Looking at risks, we have a few vectors to investigate.

Upgrade Risks

The primary risk with direct database manipulation comes with future upgrades to DNN. No set

criterion prevents DNN from changing the structure, format, or inputs for core tables and procedures.

Therefore, if you are calling database assets directly, your custom scripts can either fail or result in

unintended operation. This risk is tough to quantify.

Depending on the nature of your solution, it is also possible that your customization to the DNN tables

could result in upgrade failures. Breaking changes are especially common when adding Indexes or

Triggers against a core table.

Operational Risks

Aside from the upgrade risks, bypassing the API's can have operational risks or effects. For example,

directly modifying information on modules that support caching, or user information that is cached by

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
13

DNN, will not update. If you use, the API's provided the respective cache entries are purged, and the

information is updated.

roperly Tie Data for Multi-Portal and Multi-Module Installations

Another Best Practices area surrounds the whole concept of data isolation. What DNN data element

should drive the storage of your data? Our Best Practices recommendation in this area are mostly

focused on using common sense. The following table outlines the three most common data elements

used:

DNN/DotNetNuke Data Element Use For Storing

ModuleId Individual settings for a module and data for a module. This data, if a module is

"referenced", will still be visible for the referenced module.

TabModuleId Individual settings for a module, typically no data should be isolated at this level. If a

module is put on multiple pages, it will have one ModuleId value and a different

TabModuleId value for each page that has been added to.

PortalId Use this for storing data at a portal level.

Selecting the proper data element is really a matter of understanding your requirements and how
long the data should stick around. Therefore, our recommendation here, use appropriate options.

Foreign Keys and DNN Tables

One extension to this Best Practices is how to handle foreign keys when it comes to custom tables and

their respective data relations. There are two schools of thought here, input the values in the custom

tables but don't tie anything specifically to the DNN tables or, tie the tables using Foreign Key

constraints. Be sure to set ON DELETE CASCADE.

It has been our experience that the latter is the true Best Practices as it helps keep old data from

cluttering up a system. When a module is deleted, as long as ON DELETE CASCADE is set, the risk of

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
14

impacting a delete operation is minimal. However, if you forget this option, you can cause serious

troubles within the DNN system.

Use Consistent Flow for Module Configuration

Many developers come up with various ways of configuring their modules. Some use the standard

"Settings" control method in which you use the default "Settings" action menu item and a custom

control with a key set to "Settings". Others add specific action item elements to the modules and

require that users go through a separate process.

It has been our experience that whenever possible, a centralized management point is critical for

proper module configuration and ease of use. For this Best Practices, we recommend using the

standard Settings option. However, we fully understand that this is not the friendliest method if a

number of settings are needed as screen real estate is at a premium. If another method of

configuration is needed, be sure to add guidance to users, avoid requiring multiple settings forms to

be filled out. If multiple configurations are needed, consider implementing a "Control Panel" style

configuration to ensure ease of use.

Carefully Consider any Third-Party Inclusions

One of the essential actions to consider when looking at being a good DNN Citizen is to carefully

consider the inclusion of any third-party DLLs with your solution. The dynamically configurable

nature of the DNN Platform is where you can encounter issues. Sure, you might want to utilize Entity

Framework in your third-party module. However, another vendor may also. Given that this is NOT a

dependency distributed by the DNN Platform, you could introduce a different version of the

requirement that might break another module, or they could do the same to you.

Thankfully, the DNN platform does provide some necessary support to help avoid these conflicts.

Register ALL DLL's using an Assembly Node With Version

To have a DLL file placed in the /bin folder at installation you must have an <assembly> node within

your DNN manifest. This node optionally supports a three-part version identifier such as

<version>01.00.00</version.

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
15

Once specified, the assembly is registered to the system. If another extension is installed that

attempts to register an older version, it will fail to install. If an extension is introduced with a later

version DNN Platform will automatically add an Assembly Binding Redirect to the web.config and

update the version of the assembly in the /bin folder.

The addition of a binding redirect provides necessary prevention for significant changes. It is still

possible for major/minor version jumps to cause issues, but the risk can be minimized.

Implement Needed DNN Interfaces for Development

One of the final pieces of being a good DNN citizen is to be sure to implement common interfaces that

allow your module(s) to take advantage of the most common pieces of functionality within the DNN

core. Although not all modules will need to implement each interface, it is important to remember

that these interfaces are available and depending on the functionality desired for your module, it

might make sense to implement one or more of these interfaces.

The following sections discuss the importance of three of the most common interfaces that are

implemented by custom modules. These are considered especially important as they provide critical

support features to the framework.

IPortable

The IPortable interface is implemented at the Business Controller class level and is a conduit to allow

modules to import and export content. This functionality can be key for many module types. The

important items to remember with this interface are that content is exported based on ModuleId. Any

other import/export logic would need to be handled by the module in question.

Supporting this interface is critical in situations where individuals are using Portal Templates to setup

additional portal sites.

ISearchable

The ISearchable interface is implemented at the Business Controller class level and is a conduit that

allows modules to publish information to the DNN search indexer. This is one of the most commonly

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
16

forgotten interfaces as the process to implement is not the straightest forward. However, this is

typically one of the most needed interfaces as it is what allows users to search and find content

entered into a custom module. For implementation assistance we recommend looking at this article:

http://www.adefwebserver.com/DotNetNukeHELP/ISearchable/ or the Interfaces section of the

"Professional DotNetNuke Module Programming" book.

IActionable

The IActionable interface is implemented at the .ascx user control level and is a method used to add

additional actions to the DNN action menu for the module. Implementation of this interface for

module actions is considered a Best Practices to provide a consistent set of functionality to users

across modules.

As important as it is to implement these interfaces for integration, it is ALSO essential to

NOT implement the interface if you have no desire to implement the functionality.

Include License File and Release Notes with Package

When packaging your Extension for installation, it is important to include your software license

information as well as release notes so that installing users can see the highlights regarding changes

in the most current version. For ease of use these files should be separate files within the solution and

referenced as such so that HTML formatting can be used to improve the user experience. The

IowaComputerGurus' DNN module templates include this behavior by default for an example.

Cleanup Un-Needed Files

As your Extension grows in maturity, a time will come when you will need to make changes to the file

structure and older files will become obsolete. Although not directly harmful to a user's installation,

part of being a good citizen is ensuring that you cleanup after yourself.

The DNN manifest supports a "Cleanup" object type which, if used, will remove files from the

installation. This will allow you to remove any old DLL's, images, and controls or other files that your

application might have created.

http://www.adefwebserver.com/DotNetNukeHELP/ISearchable/

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
17

Code Specific Requirements

The following section illustrates a few key coding items that should be considered when working with

DNN.

Set ValidationGroup Properties on ALL Validators

It is a very common occurrence for a DNN module to be placed on a page with multiple other modules.

For this reason, it is important when working with any ASP.NET validator controls that you specify a

value for the ValidationGroup. If this property is omitted, you can actually cause entire pages to stop

functioning as your validators might be accidentally triggered by an action that occurs outside the

scope of your module, specifically, but on the same page in the site.

Testing Scenarios

In addition to all of the above scenarios, it is important to note that following a consistent testing

process will ensure your Extension has the best ability to play well with the others on an individual

DNN installation. At a minimum basis, we have a few recommendations for testing scenarios for any

module that will be distributed broadly.

Installation Types

The first item to think about when testing is to ensure that testing is completed both on a Parent

Portal (http://www.mysite.com) as well as a Child Portal, (http://www.mysite.com/child) as both of

these environments can exhibit different behaviors when creating links and other setup processes.

Test Scenarios

When looking at the two different types of installations, it is important for each release to not only test

a 100% clean installation, but also to test an upgrade to ensure that the module properly upgrades

and that the instances of the module on the site still function as they should. Un-installation should

also be tested with each release to ensure that all data and files are properly removed and that users

can re-install the module should they have a need.

http://www.mysite.com/
http://www.mysite.com/child

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
18

Living Document Notice

This Best Practices guide is considered a living document and will be maintained by

IowaComputerGurus. It will include the most up-to-date information possible. If you have specific

suggestions for content additions, removals, or modifications, please use the contact information

found at the end of the document to contact us. We are always looking for validation and additional

information that can be added to this document.

About IowaComputerGurus Inc.

IowaComputerGurus Inc, a Microsoft Silver Certified Partner organization, specializes in developing

custom solutions using the Microsoft .NET development stack and often utilizing DNN Platform.

Based in Ankeny, Iowa, they provide services to customers all over the world and base their business

on providing quality, affordable technology solutions with the best customer service. The company is

led by Mitchel Sellers, a Microsoft MVP, Microsoft Certified Professional, DNN MVP, and published

author.

Contacting IowaComputerGurus

IowaComputerGurus, Inc.

PO Box 737

Ankeny, Iowa 50021

Phone: (515) 270-7063

Fax: (515) 866-591-3679

Email: webmaster@iowacomputergurus.com

Website: http://www.iowacomputergurus.com

Feedback

IowaComputerGurus is committed to quality and appreciates constructive feedback on our Best

Practices documents, white papers, and other technical guides. If you discover any errors or have

mailto:webmaster@iowacomputergurus.com
http://www.iowacomputergurus.com/

© 2020 by IowaComputerGurus, Inc July 2020

515.270.7063 | support@iowacomputergurus.com
19

suggestions of additional items for inclusion or any modifications to existing content, please use one

of the above listed contact methods to let us know.

Disclaimer

This document reflects the opinions and experience of the authors as a non-compensated service to

the community. It is provided "as-is," and no warrantee is expressed or implied as to the serviceability

or applicability of any information or recommendation for any particular purpose, application, or

environment. It is the reader's responsibility to conduct their own research, consult experts, and

determine whether this information is right for their website, application, and / or environment.

Additionally, the reader understands use of this documentation constitutes agreement to the current

terms of use as published on the IowaComputerGurus.com website, which are subject to change.

Copyright and Trademark Notices

The information contained within this document is protected under international copyright laws with

a content owner of IowaComputerGurus Inc. This document may be re-distributed to anyone;

however, it must remain intact and with this disclaimer clearly visible.

DotNetNuke, DNN, DNN Platform, DNN Professional, Evoq, Evoq Content, Evoq Content Basic, DNN

Social, Evoq OnDemand, Evoq Engage, and all other variations are registered trademarks of DNN

Corporation.

Microsoft, Windows, ASP.NET, SQL, SQL Server, and other related product names are the trademarks

of Microsoft Corporation.

All other trademarks remain the property of their respective owners.

http://www.iowacomputergurus.com/

